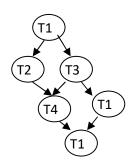
SERIE N°1 : Parallélisme (concepts de base)

Exercice 1

Soit le système de tâches défini par $S == \{(T1, T2, T3, T4, T5), T1 < T4, T2 < T4, T2 < T5, T3 < T5\}$


- 1. Donner tous les comportements possibles de ce système.
- 2. Donner les valeurs de variables pour certains comportements du système avecl'interprétation suivante des tâches :

T1: lire(X); **T2**: lire(Y); **T3**: Z := 2*X; **T4**: H := X+Y; **T5**: K := X-Y;

Remarque : les valeurs initiales des variables sont respectivement (x0, y0, z0, h0, k0).

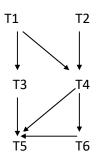
Exercice 2

Soit le système de tâches suivant :

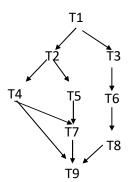
variables	Dans le domaine de lecture des	Dans le domaine d'écriture des
	tâches	tâches
C1	1,6	2
C2	6	4
C3	2,3	
C4	2,3,4	1,6
C5	5	3,5

- 1. Définir pour chaque tâche i □[1, 6] les ensembles Li et Ei.
- 2. Ce système est-il déterminé?
- 3. Ce système est-il de parallélisme maximal ? Sachant qu'un graphe de tâches est de

parallélisme maximal s'il vérifie la propriété suivante : la suppression de tout arc (T,T') du graphe entraîne la non indépendance, autrement dit L'interférence des tâches T et T'.


- 4. Donner le programme parbegin/parend correspondant
- 5. Donner le programme à l'aide de la structure fork/join

Exercice3


Ecrire les programmes parallèles correspondant aux graphes de précédences suivants à l'aide de

- 1. Parbegin/parend
- 2. Fork/join

T7

