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Abstract. This paper advocates possibilistic logic with partially or-
dered priority weights as a powerful representation format for han-
dling preferences. An important benefit of such a logical setting is
the ability to check the consistency of the specified preferences. We
recall how Qualitative Choice Logic statements (and related ones),
as well as CP-nets preferences can be represented in this framework.
We investigate how a generalization of CP-nets, namely CP-theories,
can also be handled in a partially ordered possibilistic logic setting.
Finally we suggest how this framework may be used for handling
preference queries.

1 INTRODUCTION
Possibilistic propositional logic is a logic where classical proposi-
tions are associated with priority levels; see [23] for an introduction.
In this setting, inconsistency amounts to having a classically incon-
sistent set of propositions that are all associated with strictly positive
priority levels. In particular, one cannot give priority both to p and to
¬p. Possibilistic logic may be used for handling uncertainty, or pref-
erences. In this discussion paper, we survey the use of possibilistic
logic for representing preferences, and compare it with popular rep-
resentation settings for preferences such as CP-nets [14], CP-theories
[36], or Qualitative Choice Logic [15]; see [17] for an introductory
survey on the handling of preferences in artificial intelligence, oper-
ations research, or data bases literature.

After a brief refresher on possibilistic logic, the paper provides
an account of the handling of ordered conjunctions and disjunctions
for preference modeling in possibilistic logic. We then advocate the
use of partially ordered symbolic weights for coping with the need
of leaving room for incomparability, as observed in CP-nets or in
CP-theories settings.

2 POSSIBILISTIC LOGIC
We consider a propositional language where formulas are denoted
by p1, ..., pn, and Ω is its set of interpretations. Let BN =
{(pj , αj) | j = 1, . . . ,m} be a possibilistic logic base where pj
is a propositional logic formula and αj ∈ L ⊆ [0, 1] is a prior-
ity level [23]. The logical conjunctions and disjunctions are denoted
∧ and ∨. Each formula (pj , αj) means that N(pj) ≥ αj , where
N is a necessity measure, i.e., a set function satisfying the property
N(p ∧ q) = min(N(p), N(q)). A necessity measure is associated
to a possibility distribution π as follows:
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N(p) = minω 6∈M(p)(1 − π(ω)) = 1 − Π(¬p), where Π is the
possibility measure associated to N and M(p) is the set of models
induced by the underlying propositional language for which p is true.

The base BN is associated to the possibility distribution
πNB (ω) = minj=1,...,m π(pj ,αj)(ω) on the set of interpretations,
where π(pj ,αj)(ω) = 1 if ω ∈ M(pj), and π(pj ,αj)(ω) = 1 − αj
if ω 6∈M(pj). An interpretation ω is all the more possible as it does
not violate any formula pj having a higher priority level αj . Hence,
this possibility distribution is expressed as a min-max combination:

πNB (ω) = min
j=1,...,m

max(1− αj , IM(pj)(ω))

where IM(pj) is the characteristic function of M(pj). So, if ω 6∈
M(pj), πNB (ω) ≤ 1 − αj , and if ω ∈

⋂
j∈JM(¬pj), πNB (ω) ≤

minj∈J(1 − αj). It is a description “from above" of πNB , which is
the least specific possibility distribution in agreement with the knowl-
edge base BN . A possibilistic base BN can be transformed in a base
where the formulas pi are clauses (without altering the distribution
πNB ). We can still see BN as a conjunction of weighted clauses, i.e.,
as an extension of the conjunctive normal form.

A dual representation of the possibilistic logic is based on guar-
anteed possibility measures. A guaranteed possibility measure is
associated to a possibility distribution π as follows: ∆(p) =
minω∈M(p) π(ω). Hence a logical formula is a pair [q, β], interpreted
as the constraint ∆(q) ≥ β, where ∆ is a guaranteed possibility
(anti-)measure characterized by ∆(p ∨ q) = min(∆(p),∆(q)) and
∆(∅) = 1. In such a context, a base B∆ = {[qi, βi] | i = 1, . . . , n}
is associated to the distribution

π∆
B (ω) = max

i=1,...,n
π[qi,βi](ω)

with π[qi,βi](ω) = βi if ω ∈ M(qi) and π[qi,βi](ω) = 0 oth-
erwise. If ω ∈ M(qi), π∆

B (ω) ≥ βi, and if ω ∈
⋃
i∈IM(qi),

π∆
B (ω) ≥ maxi∈I βi. So this base is a description “from below"

of π∆
B , which is the most specific possibility distribution in agree-

ment with the knowledge baseB∆. A dual possibilistic baseB∆ can
always be transformed in a base in which the formulas qj are con-
junctions of literals (cubes) without altering π∆

B .
A possibilistic logic base B∆ expressed in terms of guaranteed

possibility measure can always be rewritten equivalently in terms of
standard possibilistic logic BN based on necessity measures [10, 8]
and conversely with the equality πNB = π∆

B . This transformation is
similar to a description from below of πNB .

In case of mutually exclusive propositions, p1,... pi, ..., pn, if
N(p1) ≥ α1 > 0, then N(p2) = ... = N(pn) = 0 for the sake



of consistency. But, the set of requirements ∆(p1) ≥ β1 > 0, ...,
∆(pi) ≥ βi > 0, ..., ∆(pn) ≥ βn > 0 is consistent, and if β1 =
1 > · · · > βi > · · · > βn > 0, it can be equivalently represented
by N(p1) ≥ α1, N(p1 ∨ p2) ≥ α2, ..., N(p1 ∨ p2 ∨ · · · ∨ pi) ≥ αi,
...,N(p1∨p2∨· · ·∨pn) ≥ αn, with αi = 1−βi+1 and βn+1 = 0.

What makes the possibilistic logic setting particularly appealing
for the representation of preferences is not only the fact that the lan-
guage incorporates priority levels explicitly, but the existence of dif-
ferent representation formats [9, 21], whose representation power is
equivalent [4, 5], but which are more or less natural or suitable for
expressing preferences. Thus, preferences can be represented

• as prioritized goals, i.e. possibilistic formulas of the form (pi, αi)
meaning that N(pi) ≥ αi, and stating that making pi true has
priority level αi;

• in terms of guaranteed satisfaction levels by means of formulas of
the form [qj , βj ] understood as ∆(qj) ≥ βj , and stating that as
soon as one satisfies qj then one reaches at least satisfaction levels
βj [6];

• by means of a possibility distribution, where an ordering is explic-
itly stated between the interpretations of the language; the order-
ing is complete as soon as the values of the possibility degrees are
known;

• in terms of conditionals of the form Π(p ∧ q) > Π(p ∧ ¬q) (in-
cluding the case where is p is a tautology, i.e., N(q) > N(¬q) =
0 ⇔ Π(q) = 1 > Π(¬q)) expressing that in the context where
p is true, there is at least one interpretation where q is true which
is preferred to all interpretations where q is false. As pointed out
in [18, 20] and analyzed in details in [33], there are other com-
parative statements of interest, namely ∆(p ∧ q) > Π(p ∧ ¬q),
Π(p∧q) > ∆(p∧¬q), and ∆(p∧q) > ∆(p∧¬q). For instance,
the first one of the three is clearly more drastic than the initial one
we considered since it requires that in context p, any interpretation
where q is true is preferred to all interpretations where q is false;

• as Bayesian-like networks, since a possibilistic logic base can be
encoded either as a qualitative or as a quantitative possibilistic
networks and vice-versa. Qualitative and quantitative possibilis-
tic networks are respectively associated with a minimum- and a
product-based definition of conditioning [3].

3 ORDERED CONJUNCTIONS AND
DISJUNCTIONS

In the following, propositional variables refer to properties of items,
to be rank-ordred in terms of preferences, and formulas represent
requests to be satisfied.

Conjunctions. Putting priorities on goals is easy to understand as
a way for specifying preferences, and amounts to express a weighted
conjunction of goals, which may be stated by means of ‘and if possi-
ble’ in statements such as “p1 and if possible p2 and if possible p3”
(p1 is more important than p2, which is itself more important than
p3). Such statements have been first considered in [34] in another
setting.
The pi’s may be logically independent or not. For the sake of sim-
plicity, we use here three conditions only, but what follows would
straightforwardly extend to n conditions. We denote by M(pi),
M(pi ∧ pj), the set of items (if any) satisfying condition pi, the
set of items (if any) satisfying pi and pj , and so on. So the query “p1

is required and if possible p2 also and if possible p3 too”, has the
following intended meaning (� reads “is preferred to”)

M(p1∧p2∧p3)�M(p1∧p2∧¬p3)�M(p1∧¬p2)�M(¬p1)

i.e., one prefers to have the three conditions satisfied rather
than the two first ones only, which is itself better than having
just the first condition satisfied (which in turn is better than not
having even the first condition satisfied). This is indeed simply
described in possibilistic logic as the conjunction of prioritized goals
C = {(p1, γ1), (p2, γ2), (p3, γ3)} with 1 = γ1 > γ2 > γ3 > 0. It
can be checked that this possibilistic logic base is associated with
the possibility distribution

πC(ω) = 1 if ω ∈M(p1 ∧ p2 ∧ p3)
1− γ3 if ω ∈M(p1 ∧ p2 ∧ ¬p3)
1− γ2 if ω ∈M(p1 ∧ ¬p2)
0 if ω ∈M(¬p1).

which fully agrees with the above ordering.
Moreover in a logical encoding, a query such as “find the x’s such

that condition Q is true", i.e., ∃x Q(x)? is usually processed by
refutation. Using a small old trick due to Green [27], it amounts to
adding the formula(s) corresponding to ¬Q(x) ∨ answer(x), ex-
pressing that if item x satisfies condition Q it belongs to the answer,
to the logical base describing the content of the database. It enables
theorem-proving by resolution to be applied to question-answering.
This idea extends to preference queries expressed in a possibilistic
logic setting [13]. The expression of the query Q corresponding to
the above set of prioritized goals is then of the form

Q = {(¬p1(x) ∨ ¬p2(x) ∨ ¬p3(x) ∨ answer(x), 1),
(¬p1(x) ∨ ¬p2(x) ∨ answer(x), 1− γ3),
(¬p1(x) ∨ answer(x), 1− γ2)}.

where 1 > 1 − γ3 > 1 − γ2. Then, the levels associated with
the possibilistic logic formulas expressing the preference query
are directly associated with the possibility levels of the possibility
distribution πC providing its semantics.

Disjunctions. We may also consider disjunctive queries with pri-
orities, i.e., queries of the form “p1 is required with priority, or failing
this p2, or still failing this p3”, as discussed in [13]. It has the follow-
ing intended meaning in terms of interpretations:

M(p1)�M(¬p1∧p2)�M(¬p1∧¬p2∧p3)�M(¬p1∧¬p2∧¬p3).

As can be checked, it corresponds to the following possibilistic logic
base representing a conjunction of prioritized goals:

DN = {(p1 ∨ p2 ∨ p3, 1), (p1 ∨ p2, γ2), (p1, γ3)}.

(with 1 > γ2 > γ3) whose associated possibility distribution is

πDN (ω) = 1 if ω ∈M(p1)
1− γ3 if ω ∈M(¬p1 ∧ p2)
1− γ2 if ω ∈M(¬p1 ∧ ¬p2 ∧ p3)
0 if ω ∈M(¬p1 ∧ ¬p2 ∧ ¬p3),

which is clearly in agreement with the above ordering. It can be also
equivalently expressed in a question-answering perspective by the
possibilistic logic base:

Q′ = {(¬p1(x) ∨ answer(x), 1),
(¬p2(x) ∨ answer(x), 1− γ3),
(¬p3(x) ∨ answer(x), 1− γ2)}.



which states that if an item x satisfies p1, then it belongs to the an-
swer to degree 1, and if it satisfies p2 (resp. p3), then it belongs to
the answer to a degree at least equal to 1− γ3 (resp 1− γ2).

As noticed in [13, 24], there is a perfect duality between conjunc-
tive and disjunctive queries. Indeed the disjunctive query “p3 is re-
quired, or better p2, or still better p1” can be also equivalently ex-
pressed under the conjunctive form “p1 or p2 or p3 is required and
if possible p1 or p2, and if possible p1”. Conversely, the conjunctive
query “p1 is required and if possible p2 and if possible p3” can be
equivalently stated as the disjunctive query “p1 is required, or better
p1 and p2, or still better p1 and p2 and p3”. This can be checked on
their respective possibilistic logic representations.

Let us point out the close relation between the possibilistic repre-
sentation and qualitative choice logic (QCL) [15]. Indeed QCL intro-
duces a new connective denoted×, where p1×p2 means “if possible
p1, but if p1 is impossible then (at least) p2”. This corresponds to a
disjunctive preference of the above type. Then, the query “p1, or at
least p2, or at least p3”, which, as already explained, corresponds to
stating that p1 is fully satisfactory, p2 instead is less satisfactory, and
p3 instead is still less satisfactory, can be directly represented in the
possibilistic logic based on guaranteed possibility measures [2]. Us-
ing the notation of Section 2, the corresponding weighted base sim-
ply writes D∆ = {[p1, 1], [p2, 1 − γ3], [p3, 1 − γ2]}, which clearly
echoes Q′. It encodes the same possibility distribution on models as
the necessity-based possibilistic logic base DN .

Note that in Q′, as in Q, the weights of the possibilistic logic for-
mulas express a priority among the answers x that may be obtained.
They may be also viewed as representing the levels of satisfaction of
the answers obtained.

The linguistic expression of conjunctive queries may suggest that
p1, p2, p3 are logically independent conditions that one would like
to cumulate, as in the query “I am looking for a reasonably priced
hotel, if possible downtown, and if possible not far from the station”,
while in disjunctive queries one may think of p3 as a relaxation of
p2, itself a relaxation of p1. In fact there is no implicit limitation on
the type of conditions involved in conjunctive or disjunctive queries.
For instance, a conjunctive query such as “I am looking for a hotel
less than 2 km from the beach, if possible less than 1 km from the
beach, and if possible on the beach”, corresponds to the idea of
approximating a fuzzy requirement, such as “close to the beach” by
three of its level cuts, which are then relaxation or strengthening of
one another.

Hybrid queries. A mutual refinement of the two above types of
queries leads to “full discrimination-based queries” [13]. It amounts
to computing a lexicographic ordering of the different worlds (here
23 = 8 with 3 conditions), under the tacit, default assumption that it
is always better to have a condition fulfilled rather than not, even if
a more important condition is not satisfied. However, it is clear that
sometimes satisfying an auxiliary condition while failing to satisfy
the main condition may be of no interest, as in the example “I would
like a coffee if possible with sugar”, where having sugar or not, if no
coffee is available, makes no difference. There are even situations,
in case of a conditional preference, where it may be worse to have
p2 satisfied than not when p1 cannot be satisfied, as in the example
“I would like a Ford car if possible black” (if one prefers any other
color for non Ford cars). Full discrimination-based queries are thus
associated with the following preference ordering:

M(p1 ∧p2 ∧p3)�M(p1 ∧p2 ∧¬p3)�M(p1 ∧¬p2 ∧p3)�
M(p1 ∧ ¬p2 ∧ ¬p3)�

M(¬p1∧p2∧p3)�M(¬p1∧p2∧¬p3)�M(¬p1∧¬p2∧p3)�
M(¬p1 ∧ ¬p2 ∧ ¬p3)

It can be checked that it can be encoded in possibilistic logic under
the form (we only give the question-answering form here):

Q” = {(¬p1(x) ∨ ¬p2(x) ∨ ¬p3(x) ∨ answer(x), 1),
(¬p1(x) ∨ ¬p2(x) ∨ answer(x), α), (¬p1(x) ∨ ¬p3(x) ∨
answer(x), α′),
(¬p1(x)∨ answer(x), α′′), (¬p2(x)∨¬p3(x)∨ answer(x), β),
(¬p2(x) ∨ answer(x), β′), (¬p3(x) ∨ answer(x), γ)}

with 1 > α > α′ > α′′ > β > β′ > γ.

Constraints and wishes. A request of the form “A and if possible
B”, where bothA and B are prioritized sets of specifications may be
understood in fact in different ways. Either we consider that A and
B are of the same nature, and the request may be reorganized into a
unique set of prioritized goals, or alternatively one may consider that
what is expressed in B is not at all compulsory, but are just “wishes”
that should be used for further discrimination between situations
that would be ranked in the same way according to A [22, 24]. We
are going to examine the difference between the two points of view,
in the simple case where both A and B are made of two conditions,
namely

A = {(a2, 1), (a1, 1− α)} with 1 > 1− α > 0, and
B = {(b2, 1), (b1, 1− α′)} with 1 > 1− α′ > 0.

We further assume in this example that i) the conditions in A are
nested, as well as the ones in B, and ii) the conditions in B are re-
finements of those inA, which is necessary for allowing for a “wish”
understanding of B [22] in the second view. This means that we as-
sume M(a2) ⊇ M(a1) ⊇ M(b1), M(a2) ⊇ M(b2) ⊇ M(b1) and
α′ < α, with M(b2)

⋂
M(a2) 6= ∅.

When both A and B are viewed as constraints, i.e. as sets of
prioritized goals, namely and respectively, the request “A and if
possible B” translates into a unique set G of prioritized goals, where
the goals in B are discounted by 1 − λ, where α < λ so that the
weakest constraint in A has priority over the strongest constraint in
B:

G =
{(a2, 1), (a1, 1−α), (b2,min(1, 1−λ)), (b1,min(1−α′, 1−λ))}.

This possibilistic logic base is associated with the possibility
distribution

πG(ω) = 1 if ω ∈M(a1 ∧ b1)
λ if ω ∈M(a1 ∧ ¬b1)
α if ω ∈M(a2 ∧ ¬a1 ∧ b2)
0 if ω ∈M(¬a2).

Let us now consider the second view where only A is regarded
as a set of prioritized constraints, while B is a set of prioritized
wishes. Now we keep A and B separate. Each interpretation ω is the
associated with a pair of values: the first (resp. the second) value is
equal to 1 − γ∗ (resp. 1 − δ∗) where γ∗ (resp. δ∗) is the priority of
the formula violated by ω having the highest priority in A (resp. B).
We obtain, the following vector-valued possibility distribution:



π(A,B)(ω) = (1, 1) if ω ∈M(a1 ∧ b1)
(1, α′) if ω ∈M(a1 ∧ ¬b1 ∧ b2)
(1, 0) if f ω ∈M(a1 ∧ ¬b2)
(α, α′) if ω ∈M(a2 ∧ ¬a1 ∧ b2)
(α, 0) if ω ∈M(a2 ∧ ¬a1 ∧ ¬b2)
(0, 0) if ω ∈M(¬a2).

Note the lexicographic ordering of the evaluation vectors. We now
have 6 layers of interpretations (instead of 4 in the previous view),
which makes it clear that this second view is more refined. However,
in the rest of the paper, all the preferences are viewed as constraints.

4 CP-NETS IN POSSIBILISTIC LOGIC

This section presents a possibilistic logic approach with symbolic
weights that generalizes the representation of preferences reviewed
in Section 3. The proposed method enables the handling of condi-
tional preferences, as well as the representation of prioritized con-
junctions. The approach is both more faithful to user’s preferences
than the CP-net approach as we shall see. Formally, a CP-net [28] N
over the set of Boolean variables V = {X1, · · · , Xn} is a directed
graph over the nodes X1, · · · , Xn, and there is a directed edge from
Xi to Xj if the preference over the value Xj is conditioned on the
value of Xi. Each node Xi ∈ V is associated with a conditional
preference table CPT (Xi) that associates a strict (possibly empty)
partial order>CP (ui) with each possible instantiation ui of the par-
ents ofXi. A complete preference ordering satisfies a CP-netN iff it
satisfies each conditional preference expressed inN . In this case, the
preference ordering is said to be consistent with N . Since CP-nets
encode partial orders, while possibilistic logic encodes a complete
preorder (when priorities are given), these two formalisms cannot be
equivalent. The best we can do is to approximate CP-nets in possi-
bilistic logic. A faithful approximation of a CP-net in possibilistic
logic consists in preserving all strict preferences induced by the CP-
net [18, 20]. However, by enforcing appropriate ordering constraints
between symbolic weights, we can obtain an exact representation of
a CP-net in possibilistic logic with symbolic weights [29, 32], as ex-
plained now.

Using an example, we first present the idea of representing con-
ditional preferences by means of possibilistic logic formulas with
symbolic weights. We then introduce a natural preorder between for-
mulas, which may be then completed by further constraints between
symbolic weights. Lastly, a general evaluation procedure is outlined.

4.1 Possibilistic representation of conditional
preferences – An example.

Example 1 taken from [36], is about planning holidays, where one
has the following preferences: one can either go next week (n) or
later in the year (n̄). One can decide to go either to Oxford (o) or
to Manchester (ō), and one can either take a plane (p) or drive and
take a car (p̄). So, there are three variables X1, X2 and X3 where
X1={n, n̄}, X2={o, ō} and X3={p, p̄}, where X stands for a set of
possible assignments of X. Suppose the person prefers to go next
week than later in the year and prefers to fly than to drive unless he
goes later in the year to Manchester.

Such preferences can be encoded as prioritized goals in possibilis-
tic logic, as explained now. The possibilistic encoding of the condi-
tional preference “in context c, a is preferred to b” is a pair of possi-
bilistic formulas: {(¬c ∨ a ∨ b, 1), (¬c ∨ a, α)} with 1 > α > 0.

Namely if c is true, one should have a or b (the choice is only
between a and b), and in context c, it is somewhat imperative to
have a true. This encodes a constraint of the form N(¬c ∨ a) ≥ α,
itself equivalent here to a constraint on a conditional necessity
measure N(a|c) ≥ α (see, e.g., [23]). This is still equivalent
to Π(¬a|c) ≤ 1 − α, where Π is the dual possibility measure
associated with N . It expresses that the possibility of not having
a is upper bounded by α, i. e. ¬a is all the more impossible
as α is small. Such a modeling has been proposed in [30] for
representing preferences, and approximating CP-nets. It can be
proved that {(¬c∨a∨ b, 1), (¬c∨a, α)} is equivalent to requesting
N(a|c) ≥ α > 0 = N(b|c). Note that when b ≡ ¬a, the first
clause becomes a tautology, and thus does not need to be written.
Strictly speaking, the possibilistic clause (¬c ∨ a, α) expresses a
preference for a (over ¬a) in context c. The clause (¬c∨ a∨ b, 1) is
only needed if a ∨ b does not cover all the possible choices. Assume
a ∨ b ≡ ¬d (where ¬d is not a tautology), then it makes sense to
understand the preference for a over b in context c, as the fact that
in context c, b is a default choice if a is not available. If one wants
to open the door to remaining choices, it is always possible to use
(¬c ∨ a ∨ b, α′) with α′ > α, instead of (¬c ∨ a ∨ b, 1). Thus,
the approach easily extends to non binary choices. For instance,
“I prefer Renault (r) to Chrysler (c) and Chrysler to Ford (f)" is
encoded as {(r ∨ c ∨ f, 1), (r ∨ c, α), (r, α′)}, with α > α′.

It is worth noticing that the encoding of preferences in this frame-
work also applies to Lacroix and Lavincy’s approach [34], namely,
when one wants to express that “p1 ∧ p2 is preferred to p1 ∧ ¬p2"
and p1 is mandatory. It is encoded by ((p1 ∧ p2) ∨ (p1 ∧ ¬p2), 1),
equivalent to (p1, 1), and by (p1∧p2, 1−α) equivalent to (p1, 1−α)
and (p2, 1 − α), (p1, 1 − α) being subsumed by (p1, 1). Thus, one
retrieves the encoding (p1, 1) and (p2, 1 − α), already proposed in
Section 3.

4.2 Preorder induced by formulas with symbolic
priority levels.

When one does not know precisely how imperative the preferences
are, the weights can be handled in a symbolic manner, and then
partially ordered. This means that the weights are replaced by
variables that are assumed to belong to a linearly ordered scale
(the strict order will be denoted by � on this scale), with a top
element (denoted 1) and a bottom element (denoted 0). Thus, 1− (.)
should be regarded here just as denoting an order-reversing map
on this scale (without having a numerical flavor necessarily), with
1− (0) = 1, and 1− (1) = 0. On this scale, one has 1 � 1− α, as
soon as α 6= 0. The weights are different from 1 but are all greater
than 0. We assume that the order-reversing map relates to two scales:
the one graded in terms of necessity degrees, or if we prefer here in
terms of imperativeness, and the one graded in terms of possibility
degrees, i.e. here, in terms of satisfaction levels. Thus, the level of
priority α for satisfying a preference is changed by the involutive
mapping 1 − (·) into a satisfaction level when this preference is
violated.

Example 1: Let N be a CP-net over variables X1, X2 and X3,
let Γ be a set of constraints, ϕi ∈ Γ, where ϕ1 = > : n > n̄,
ϕ2 = > : o > ō, ϕ3 = n : p > p̄, ϕ4 = o : p > p̄ and
ϕ5 = n̄o : p̄ > p. These constraints do not encode a complete
CP-Net. But it can be completed by making it explicit with the
additional constraints : ϕ6 = no : p > p̄, ϕ7 = nō : p > p̄



and ϕ7 = n̄o : p > p̄. Note that in possibilistic logic, we are not
obliged to explicit all these constraints, indeed it is encoded by the
possibilistic constraints K1 = {c1 = (n, α), c2 = (o, β), c3 =
(n̄∨p, γ), c4 = (ō ∨ p, δ), c5 = (n ∨ o ∨ p̄, ε)}. Since the values
of the weights α, β, γ, δ, ε are unknown, no particular ordering is
assumed between them. Table 1 gives the satisfaction levels for
the possibilistic clauses encoding the five elementary preferences,
and the eight possible choices. The last column gives the global
satisfaction level by minimum combination.

Table 1. Possible alternative choices in Example1.

c1 c2 c3 c4 c5 min
nop 1 1 1 1 1 1
nop̄ 1 1 1-γ 1-δ 1 1-γ,1-δ
nōp 1 1- β 1 1 1 1- β
nōp̄ 1 1- β 1-γ 1 1 1- β,1-γ
n̄op 1- α 1 1 1 1 1- α
n̄op̄ 1- α 1 1 1-δ 1 1- α,1-δ
n̄ōp 1- α 1- β 1 1 1-ε 1- α, 1- β,1-ε
n̄ōp̄ 1- α 1- β 1 1 1 1- α ,1- β

Even if the values of the weights are unknown, as it is the case in
the above example, a partial order between the interpretations (they
are 8 in our example) is naturally induced by a Pareto ordering (de-
noted�Par) between the corresponding vectors evaluating the satis-
faction levels with respect to the constraints.

Generally speaking, let K = {(ai, αi)} be a set of formulas asso-
ciated with symbolic weights. Let t, t′ be two interpretations of the
set of formulas {ai|i = 1, n)} associated with the vectors of their
evaluations with respect to each formula in K. Then, we have

t �Par t′ iff Σt ⊂ Σt′ ,

where Σt (resp. Σt′ ) is the set of formulas in K violated by t (resp.
t′).

In our example, we have for instance the following Pareto order-
ings between the 5-component vectors

(1−α, 1, 1, 1, 1)�Par (1−α, 1−β, 1, 1, 1)�Par (1−α, 1−β, 1, 1, 1−ε)

whatever the values of α, β, ε. Thus, we get the following partial
order between interpretations:
nop�Par {nop̄, nōp, n̄op, nōp̄, n̄op̄, n̄ōp̄, n̄ōp}
n̄op �Par n̄ōp �Par n̄ōp̄
nōp�Par nōp̄ ; n̄op �Par n̄op̄

Thus, this partial order amounts to rank-ordering a vector v′ after
a vector v, each time the set of preferences violated in v is strictly in-
cluded in the set of preferences violated in v′, since nothing is known
on the relative values of the symbolic levels (except they are strictly
smaller than 1, when different from 1). Then a vector v is greater
than another v′, only when the components of v are equal to 1 for
those components that are different in v and v′.

We could also use the discrimin order denoted by �discrimin
defined in the following way: identical vector components are dis-
carded, and the minima of the remaining components for each vector
are compared. Note that t and t′ are comparable only if one of the two
minima returns 1 (which is the only evaluation known to be greater
than any symbolic weight ( 6= 1)). In fact here, the orderings �Par
and �discrimin coincide.

Figure 1. CP-net and partial order induced by it

4.3 Introducing preferences between symbolic
weights

The authors of [32] have proposed an encoding of CP-nets by impos-
ing a partial order between the symbolic weights of formulas. The
partial order on symbolic weights is defined as follows. For each pair
of formulas (¬ui ∨ x, αi) and (¬uj ∨ y, αj) such that X is a fa-
ther of Y where uj is (¬ui ∨ ¬x) or (¬ui ∨ x), we put αi > αj
[32, 28]. These constraints between symbolic weights can be ob-
tained by Algorithm 1, which computes the partial order between
symbolic weights from a set of ceteris paribus statements.

Once we have got this partial order over symbolic weights, we
use the leximin order defined below, for refining the �Par ordering
used before:

Leximin with partially ordered weights: Let Ψ = {1 −
α1, · · · 1−αn, 1} be a set of symbolic possibility degrees , and ω, ω′

two interpretations ∈ Ω. Let Ψ(ω) = (πi(ω) · · ·πn(ω)),Ψ(ω′) =
(πi(ω

′) · · ·πn(ω′)) be their vectors of evaluation in terms of sym-
bolic weights (with respect to the violated formulas). Then the lex-
imin ordering denoted�lex between vectors of values belonging to a
totally ordered set consists in applying the discrimin procedure after
reordering their components in increasing order. The leximin order-
ing can be extended as follows:

• delete all pairs (πi(ω), πj(ω
′)) where πi(ω) = πj(ω

′) so we get
Ψ∗(ω) and Ψ∗(ω′) where Ψ∗(ω) ∩Ψ∗(ω′) = ∅

• ω �lex ω′ iff min(Ψ∗(ω) ∪Ψ∗(ω′)) ⊆ Ψ∗(ω)
• ω and ω are incomparable iff min(Ψ∗(ω) ∪ Ψ∗(ω′)) 6⊆ Ψ∗(ω)

and min(Ψ∗(ω) ∪ Ψ∗(ω′)) 6⊆ Ψ∗(ω′).

Note that this leximin ordering is the same as discrimin and
Pareto orderings, if weights are incomparable. When some weights
are comparable, discrimin and Pareto orderings still coincide due
to the particular nature of the vectors that are compared (i.e., vectors
(u1, · · · , ui, · · · , un) such as ui ∈ {1, 1 − αi}), but the extended
leximin refines the Pareto ordering.

In Example 1, in the order induced by the Pareto ordering, the
interpretations nōp̄, n̄op̄, n̄ōp̄ are incomparable. Applying algorithm



1, we give priority to father nodes, i.e., here, we introduce the fol-
lowing constraints between the symbolic weights α > max(γ, δ, ε)
and β > max(γ, δ, ε). Then, the application of leximin ordering
allows us to distinguish between {nōp̄, n̄op̄} and n̄ōp̄. So, the
order induced by the CP-net, or equivalently the one induced by the
possibilistic approach giving priority to father nodes (see Figure 1) is:

nop �lex {nop̄, nōp, n̄op},
{nop̄, n̄op} �lex n̄op̄, {nōp, n̄op} �lex nōp̄
{nōp̄, n̄op̄} �lex n̄ōp̄ �lex n̄ōp

Algorithm 1 calculates the relative importance between CP-net pref-
erences statements
Require: C a set of constraints of the form (Pi, αi)

Γ a set of preference statement of the form u : x > x′

IDC=∅
for ϕi = ui : xi > x′i in Γ do

for cj in C do
if cj is of the form (ui, αj) then

for ck in C do
if ck is of the form (¬ui ∨ xi, αk) then

IDC← IDC + (αj > αk)
end if

end for
end if

end for
end for
return IDC

5 CP-THEORIES IN POSSIBILISTIC LOGIC
Wilson [35, 36] has proposed a new formalism named CP-theories
that extends CP-nets and TCP-nets in order to express stronger
conditional preferences as well as the usual CP-net ceteris paribus
statements. For a set of variables V , the language LV (abbreviated
to L) consists of all statements of the form u : x > x′ [W ], where
u is an assignment to a set of variables U ⊆ V (i.e., u ∈ U ),
x, x′ ∈ X are different assignments to some variable X 6∈ U (and
so x and x′ correspond to different values of X) and W is some
subset of V − U − {X}. If ϕ is the statement u : x > x′ [W ],
we may write uϕ = u, Uϕ = U, xϕ = x, x′ϕ = x′,Wϕ = W
and Tϕ = V − ({X} ∪ U ∪ W ). Subsets of L are called
conditional preference theories or CP-Theories (on V ). For
ϕ = u : x > x′ [W ], let ϕ∗ be the set of pairs of interpretations
{(tuxw, tux′w′) : t ∈ Tϕ, w, w′ ∈ W}. Such pairs (ω, ω′) ∈ ϕ∗

are intended to represent a preference for ω over ω′, and ϕ is
intended as a compact representation of the preference information
ϕ*. Informally, ϕ represents the statement that, given u and any
t, x is preferred to x′, irrespective of the assignments to W , it
means that we prefer any outcome with x to any outcome with x′,
in the context u. For conditional preference theory Γ ⊆ L, define
Γ∗ =

⋃
ϕ∈Γ ϕ

∗, so Γ∗ represents a set of preferences. We assume
here that preferences are transitive, so it is then natural to define
order >Γ , induced on V by Γ, to be the transitive closure of Γ∗. With
this type of statements (CP-theory statements), we can represent a
CP-net by a statement u : x > x′ [W ] with W = ∅ and a TCP-net
with W containing at most one variable [36].

In possibilistic logic, a CP-theory statement ϕ = u : x > x′ [W ]
is represented by : ∆(tux) > Π(tux′) standing for

minω|=tuxπ(ω) > maxω′|=tux′π(ω′) [33] which has the
same semantics as the “irrespectively" constraint (given u x is pre-
ferred to x′ irrespective of the assignments to W ). The possibilistic
encoding of CP-theory expression uses exactly the same possibilistic
formulas (with symbolic weights) as for the corresponding CP-net
expression (when W is ignored). All the additional constraints
between the weights of the father nodes with respect of child node
are also maintained. Further, constraints between weights are added
according to the procedure that we describe now.

Consider a CP-theory expression u : x > x′ [W ]. It is encoded
by a possibilistic preference statement (¬u ∨ x, αi). Then we shall
add the constraint αi > αj for any αj , such that (¬u ∨ w,αj)
is a possibilistic preference statement, with the same context u,
over one variable (or more) w ∈ W . These constraints over
weights can be obtained by Algorithm 2: from a set of CP-theory
statements of the forme u : x > x′[W ], we elicit a partial order
over symbolic weights used for inducing the same order between
interpretations as the CP-theory. This procedure indeed guarantees
that the constraints of the form ∆(tux) > Π(tux′) which is same
as ∀w,w′ ∈ W,π(tuxw) > π(tux′w′) will be satisfied. Let us
give a sketch of the reason why:

ConsiderX = {x, x′} andW = {w,w′}, the possibilistic encoding
of the constraint will be ci = (¬u ∨ x, αi), and consider that we
got a possibilistic constraint cj = (¬u ∨ w,αj). Let the possibility
distribution of the constraint ∆(tux) > Π(tux′) ∀t ∈ T :

• π(tuxw) > π(tux′w)
• π(tuxw′) > π(tux′w)
• π(tuxw) > π(tux′w′)
• π(tuxw′) > π(tux′w′)

Proof: we proceed using reductio ad absurdum, so, we suppose
that αj ≥ αi. Consider the two interpretations ω1 = tuxw′ and
ω2 = tux′w, ω1 satisfies the first constraint (ci) and falsifies the
second one (cj), however, ω2 falsifies the first constraint and satisfies
the second one, let v1 = (1, 1 − αj) and v2 = (1 − αi, 1) be
the vectors of satisfactions associated to ω1 and ω2 respectively,
ω1 � ω2 imply 1−αj > 1−αi, that means αj < αi (contradiction)
QED.

Example 2 [36] : Let Γ be a CP-Theory over three variables
X1, X2 and X3, composed of set of preferences statements ϕ1−5

given by: ϕ1 = > : x1 > x̄1[X2, X3], ϕ2 = x1 : x3 > x̄3[X2], ϕ3

= x1 : x2 > x̄2, ϕ4 = x̄1 : x2 > x̄2[X3], ϕ5 = x̄1 : x3 > x̄3, this
statements are coded in possibilistic logic by:
K2 = {c1 = (x1, α), c2 = (x̄1 ∨ x3, β), c3 = (x̄1 ∨ x2, γ), c4 =
(x1 ∨ x2, δ), c5 = (x1 ∨ x̄3, ε)}.
Table 2 gives the satisfaction levels for the possibilistic clauses
encoding the five elementary preferences, and the eight possible
choices. The last column gives the global satisfaction level by
minimum combination.

After applying the Pareto ordering (or equivalently here,
discrimin ordering), what we get is an ordering which is less re-
fined than the ordering induced by the CP-theory or by the CP-net
(see Figure 2). But we can capture the CP-theory ordering by taking
into account an ordering between weights that reflects the relative
importance of the constraints, and which can be elicited from the
CP-theory. In the example, we should enforce α > max(β, γ, δ, ε)
due CP-net “father" constraints (X1 is the father of X2 and of X3);



Table 2. Possible alternative choices in Example2.

c1 c2 c3 c4 c5 min
x1x2x3 1 1 1 1 1 1
x1x2x̄3 1 1-β 1 1 1 1-β
x1x̄2x3 1 1 1-γ 1 1 1-γ
x1x̄2x̄3 1 1-β 1-γ 1 1 1-β,1-γ
x̄1x2x3 1-α 1 1 1 1-ε 1-α,1-ε
x̄1x2x̄3 1-α 1 1 1 1 1-α
x̄1x̄2x3 1-α 1 1 1-δ 1-ε 1-α,1-δ,1-ε
x̄1x̄2x̄3 1-α 1 1 1-δ 1 1-α,1-ε

besides, we have β > γ due to the “irrespectively" constraint [w. r. t.
X2] in ϕ2 and we have δ > ε due to the “irrespectively" constraint
[w. r. t. X3] in ϕ4 (by applying the procedure explained above, or
Algorithm 2). Then, the order induced by the CP-theory and the one
captured by the possibilistic approach (taking account the above in-
equalities between symbolic weights) coincide. It is given by:
x1x2x3 �lex x1x̄2x3 �lex x1x2x̄3 �lex x1x̄2x̄3 �lex x̄1x2x̄3 �lex
x̄1x2x3�lex x̄1x̄2x3�lex x̄1x2x̄3

Algorithm 2 calculates the relative importance between CP-theory
preferences statements
Require: C a set of constraints of the form (Pi, αi)

Γ a set of preference statement of the form u : x > x′[W ]
IDC=∅
for ϕi = ui : xi > x′i[Wi] in Γ do

if Wi=∅ then
IDC← IDC + Algorithm 1 (C ,{ϕi})

else
for cj in C do

if cj is of the form (¬ui ∨ xi, αj) then
for ck in C do

if ck is of the form (¬ui ∨ ¬xi ∨ v, αk) or
(¬ui ∨ z, αk)/z ∈Wi, v ∈ {V − U} then

IDC← IDC + (αj > αk)
end if

end for
end if

end for
end if

end for
return IDC

As a summary, the Pareto ordering (here equivalent to the dis-
crimin ordering) is obtained without introducing any inequality con-
straint between importance weights (all symbolic weights, distinct
from 1, remain incomparable). Then the CP-net is obtained by en-
forcing priorities in favor of constraints associated with “father"
nodes, but ignoring the “irrespectively" constraints of the CP-theory.
Note that Pareto ordering is compatible with the CP-net and CP-
theory orderings, but less refined, and the CP-net ordering is less
refined than the CP-theory one (due to the ignorance of “irrespec-
tively" constraints).

6 CONCLUDING REMARKS

In this paper, the possibilistic logic framework has been recalled and
its interest for preference representation strongly advocated. Clearly,
possibilistic logic is still close to classical logic, but the introduction

Figure 2. Lexmin, Cp-net and CP-Theory orders in Example 2

of weights substantially increases its representation capabilities, es-
pecially with respect to inconsistency handling. We have shown how
the use of symbolic weights in the possibilistic logic setting enables
us to deal with partial orders (encoding CP-nets and CP-theories in
this way). This constitutes an alternative to the introduction of a pref-
erence relation inside the representation language, as in, e.g., [12].

Moreover, it has been recalled how the use of symbolic weights
[11] enables us to represent CP-nets faithfully in the possibilistic
logic setting, by imposing greater priority weights to father nodes.
Moreover, possibilistic logic with symbolic weights has a represen-
tation power much richer than the one of CP-nets, since, e.g., one
may give priority to a constraint associated with a child node (which
is impossible in CP-nets or in TCP-nets). Then, after restating the
CP-theory representation framework, and results illustrating its ex-
pressive power which generalizes CP-nets and TCP-nets [36], we
have shown that a CP-theory can be faithfully represented in pos-
sibilistic logic by introducing further inequalities between symbolic
weights in order to take into account the CP-theory idea that some
preferences hold irrespective of the values of some variables. An in-
teresting question for further research would be to examine the pos-
sible relations that may exist between the non symmetrical notion of
independence in possibilistic networks [1] and some limitations of
graphical representation settings such as CP-nets.

We have also indicated that our handling of preferences statements
in the style of Qualitative Choice Logic remains close to mainstream
database approaches to preference queries pioneered by Lacroix and
Lavency [34]. It has also already pointed out that Chomicki’s ap-
proach [16] based on winnow operator can be also expressed in our
setting [28].

Lastly, let us also mention other possibilistic logic-based works in
preference modeling where one may handle both general statements
about importance levels and (couter)-examples [19, 26]. This kind
of approach may also incorporate a Choquet’s integral-like handling
of importance levels [31]. Moreover, a possibilistic logic represen-
tation of Sugeno integral has been recently proposed [25], and last



but not least possibility theory setting enables to represent bipolar
preferences, where both negative preferences (rejections) and posi-
tive preferences (what is really desired) can be expressed [7].
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